Time-dependent polarization behaviour of pipeline grade steel in low ionic strength environments

نویسندگان

  • S. L. CARSON
  • M. E. ORAZEM
چکیده

A bench-top experimental approach is described for estimation of the polarization behaviour of pipeline steel as a function of the time-dependent formation of scale and calcareous deposits in simulated soil leachates. A three-time constant process model provided a common set of parameters for a given soil environment and level of aeration. The parameters estimated could be applied to a broad range of current values and were independent of time, potential and applied current. The experimental approach, model and regression procedure are general and could be used to determine the physical parameters associated with the seasonal variations (wet±dry cycles) in the soils surrounding pipelines or with other factors that in ̄uence general corrosion. The polarization model could provide a boundary condition for mathematical models for cathodic protection of pipelines or other buried structures. The separation of current contributions implicit in the model can be used to assess the reduction of corrosion current associated with speci®c CP criteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stress- Corrosion Crack Initiation of High-strength Pipeline Steel in Near-neutral pH Environments

Stress-corrosion cracking (SCC) tests were conducted in the near-neutral pH standard solution, NS4, and in an actual soil solution, using four-point bending at a high stress ratio and low frequency conditions very similar to those of operational pipelines. Pitting incubation appeared first and then pitting initiated and grew in both solutions although there were many more pits on the specimen t...

متن کامل

EFFECT OF IMMERSION TIME ON THE ELECTROCHEMICAL BEHAVIOUR OF AISI 321 STAINLESS STEEL IN 0.1 M H2SO4 SOLUTION

In this study, effect of immersion time on the electrochemical behaviour of AISI 321 stainless steel (AISI 321) in 0.1 M H 2SO 4 solution under open circuit potential (OCP) conditions was evaluated by potentiodynamic polarization, Mott–Schottky analysis and electrochemical impedance spectroscopy (EIS). Mott–Schottky analysis revealed that the passive films behave as n-type and p-type s...

متن کامل

The Electrochemical Behavior of AISI 321 Stainless Steel in Alkaline Media

In this paper, the electrochemical behaviour of passive films formed on AISI 321 stainless steel (AISI 321) immersed in 0.1 M NaOH + 0.1 M KOH solution was evaluated by different electrochemical techniques. For this purpose, passive films were formed at open circuit potential for 1 to 12 hours and then electrochemical measurements were done. The polarization curves suggested that AISI 321 showe...

متن کامل

ELECTROCHEMICAL BEHAVIOUR OF AISI 304 STAINLESS STEEL IN SULFURIC SOLUTION: EFFECTS OF ACID CONCENTRATION

The effects of H2SO4 concentration on the electrochemical behaviour of passive films formed on AISI 304 stainless steel were investigated using by potentiodynamic polarization, Mott–Schottky analysis and electrochemical impedance spectroscopy (EIS). Potentiodynamic polarization indicated that the corrosion potentials were found to shift towards negative direction with an increase in solution co...

متن کامل

Evaluation of corrosion behaviour on Mn-Cr austenitic steels using 0.1 M HCl solution

One of the attractive low activation steels is the austenitic Mn-Cr steel from the view point of waste disposal because of few long-lived nuclides. In this paper, three types of Mn-Cr austenitic steels were fabricated by vacuum induction furnace. Then plates with 10 mm thickness were fabricated by hot-rolling. The physical metallurgy of these steels was studied by the corrected Schaeffler diagr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007